4.9x^2+22x-381=0

Simple and best practice solution for 4.9x^2+22x-381=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4.9x^2+22x-381=0 equation:



4.9x^2+22x-381=0
a = 4.9; b = 22; c = -381;
Δ = b2-4ac
Δ = 222-4·4.9·(-381)
Δ = 7951.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-\sqrt{7951.6}}{2*4.9}=\frac{-22-\sqrt{7951.6}}{9.8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+\sqrt{7951.6}}{2*4.9}=\frac{-22+\sqrt{7951.6}}{9.8} $

See similar equations:

| X^3+2x^2-7x-4=0 | | 5a2+5a-3=0 | | 63/40=13/20-1/5x | | 3n2-5n-3=0 | | 2n2+5n-12=0 | | -3u+45=-(u-7) | | 6x+9=4x-3x1/4 | | 4(d-4)=2=3(d+1) | | (8r+6)=180, | | (8r-6)=180, | | 5(x-2)+2x=(x+4)-38 | | Y=0.43(x)-4 | | ‘42/51=x/100’ | | Y=3/7(x)-4 | | 16.1t^2-120t+100=0 | | P=-25x-(10+250) | | 2^-x=0,125 | | 8r+4+-5=-15+3r | | 2^(-x)=0,125 | | b) | | 20+(2x+10)=180 | | 8x+-18=38 | | 450=3.14*r^2*18 | | 30+(2x+10)=180 | | 40+(2x+10)=180 | | 40+(2x+10=180 | | 10w=10,000,000,000 | | 44*3^x=11 | | A^2+b^2=73 | | (7x-6)=0.85(5x) | | X-65=y | | 7=4x/2×-3 |

Equations solver categories